Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 | 1x 1x 1x 1x 1x 1x 1x 1x 15483x 15282x 8x 8x 80x 80x 40x 40x 8x 3054x 12216x 12216x 12216x 12216x 3054x 3066x 3066x 17019x 3066x 3066x 3066x 3066x 3066x 3054x 12x 4x 8x 11x 11x 11x 11x 11x 11x 121x 3066x 3066x 11x | // @ts-check /** * CREDITS: Implementation based on Firefox's nsSMILKeySpline.cpp * MIT license * * origin: https://github.com/d3/d3-ease/pull/14/commits/c6734e347c280eeb129ea273c975f57034f3ff8e */ const BINARY_SEARCH_PRECISION = 1e-7, BINARY_SEARCH_ITERATIONS = 10, NEWTON_ITERATIONS = 4, NEWTON_MIN_SLOPE = 0.02, SAMPLES_COUNT = 11, SAMPLES_LAST = SAMPLES_COUNT - 1, SAMPLES_STEP = 1.0 / (SAMPLES_COUNT - 1), FLOAT_ARRAYS_AVAILABLE = typeof Float32Array === "function"; /** * @brief Calculate Px(t) or Py(t) given B and C points * @param {number} t * @param {number} b * @param {number} c * @return {number} */ function calcBezier(t, b, c) { // eslint-disable-next-line return (((1.0 + (b *= 3.0) - (c *= 3.0)) * t + c - 2.0 * b) * t + b) * t; } /** * @brief Calculate (dPx/dt)(t) or (dPy/dt)(t) given B and C points * @param {number} t * @param {number} b * @param {number} c * @return {number} */ function calcSlope(t, b, c) { // eslint-disable-next-line return ((1.0 + (b *= 3.0) - (c *= 3.0)) * t * 3.0 + 2.0 * c - 4.0 * b) * t + b; } /** * @brief Estimate t (from [t1, t2] interval) given x value and points B and C * @param {number} x * @param {number} t1 * @param {number} t2 * @param {number} b * @param {number} c * @return {number} */ function binarySearch(x, t1, t2, b, c) { var t, i = 0, foundX; do { t = (t1 + t2) / 2.0; if (x < (foundX = calcBezier(t, b, c))) { t2 = t; } else { t1 = t; } } while (++i < BINARY_SEARCH_ITERATIONS && Math.abs(x - foundX) > BINARY_SEARCH_PRECISION); return t; } /** * @brief Estimate t using Newton-Raphson method given points B and C * @param {number} x * @param {number} guessForT * @param {number} b * @param {number} c * @return {number} */ function newtonRaphsonIterate(x, guessForT, b, c) { var currentX, currentSlope; for (var i = 0; i < NEWTON_ITERATIONS; ++i) { currentX = calcBezier(guessForT, b, c) - x; currentSlope = calcSlope(guessForT, b, c); Iif (currentSlope === 0.0) { return guessForT; } guessForT -= currentX / currentSlope; } return guessForT; } /** * @brief Estimates t given points B and C, and a set of precalculated values * @param {number} x * @param {number} b * @param {number} c * @param {number[]|Float32Array} sampleValues * @return {number} */ function estimateT(x, b, c, sampleValues) { var currentSample = 0, dist, intervalStart, initialSlope, guessForT; while (currentSample !== SAMPLES_LAST && sampleValues[currentSample] <= x) { ++currentSample; } intervalStart = --currentSample * SAMPLES_STEP; // Interpolate to provide an initial guess for t dist = (x - sampleValues[currentSample]) / (sampleValues[currentSample + 1] - sampleValues[currentSample]); guessForT = intervalStart + (dist * SAMPLES_STEP); initialSlope = calcSlope(guessForT, b, c); if (initialSlope >= NEWTON_MIN_SLOPE) { return newtonRaphsonIterate(x, guessForT, b, c); } else if (initialSlope === 0.0) { return guessForT; } else { return binarySearch(x, intervalStart, intervalStart + SAMPLES_STEP, b, c); } } /** * @brief Assumes points A = (0, 0) and D = (1, 1) * @param {number} bx * @param {number} by * @param {number} cx * @param {number} cy */ export function cubicBezier(bx, by, cx, cy) { var sampleValues = (FLOAT_ARRAYS_AVAILABLE ? new Float32Array(SAMPLES_COUNT) : new Array(SAMPLES_COUNT)); // Limit x to [0, 1] interval bx = Math.max(0.0, Math.min(1.0, +bx)); cx = Math.max(0.0, Math.min(1.0, +cx)); by = +by; cy = +cy; // Precompute sample x-values for (var i = 0; i < SAMPLES_COUNT; ++i) { sampleValues[i] = calcBezier(i * SAMPLES_STEP, bx, cx); } function bezier(/** @type {number} */ x) { var t = estimateT(x, bx, cx, sampleValues); return calcBezier(t, by, cy); } return bezier; } |